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DEVELOPMENT OF INTERNAL WAVES GENERATED BY A CONCENTRATED PULSE SOURCE 

IN AN INFINITE UNIFORMLY STRATIFIED FLUID 

N. A. Zavol'skii and A. A. Zaitsev UDC 532.592+551.466.81 

i. The question of the fundamental function of the internal wave operator (FFIWO) in an 
infinite incompressible uniformly stratified fluid has been raised several times in recent 
years (see [1-4], say). This is natural: Its solution is of top priority in construction of 
a theory of linear forced internal waves (FIW). Almost everything is now known about FFIWO; 
in particular, a representation has been found in the form of a single integral in the fre- 
quencies, and its asymptotic has been obtained for large values of the time. Available in- 
formation about the field of unsteady FIW is not detailed enough, however; there is no infor- 
mation about the limits of applicability of the asymptotic formulas, and no complete clarity 
relative to the initial stage of wave field evolution. The gap can be eliminated by using a 
numerical computation, but this has not yet been done, and this paper intends to fill this 
gap. Its main content is the elucidation of results of a computer computation of the integral 
representation for an unsteady FIW field, and their comparison with a computation of the 
asymptotic for this field in order to determine its range of action. 

The FFIWO has no direct physical meaning; hence, the main attention will not be turned to 
this function. From the physical viewpoint, the consideration of the wave function of a con- 
centrated pulse source (CPSF) is expedient (especially if we have in mind the application to 
problems of stratified fluid flow around bulk bodies). It was not apparently studied in de- 
tail earlier. Our computations refer precisely to the case of the action of a concentrated 
pulse source in an infinite incompressible uniformly stratified fluid. Since both functions, 
the FFIWO and CPSF, are closely interrelated, appropriate deductions relative to the proper- 
ties and behavior of the fundamental function can be made from these computations. There are 
certainly distinctions. They will be mentioned below, together with the similarity in the 

behavior of these functions. 

2. As the CPSF we take the vertical displacement of a fluid particle due to the FIW. We 
denote it by ~ = ~(x, y, z, t). Here x, y, z are the two horizontal and one vertical coordi- 
nate of the observation point (the z axis is directed upward), and t is the time. The origin 
of the right-handed rectangular coordinate system is set at the location of the pulse source 
whose action occurs instantaneously at the time t = 0 and causes the appearance of the FIW. 
We consider that an incompressible fluid fills the whole space and is stratified uniformly 
along the vertical. The Weisailla frequency therein is constant and equal to N. The exami- 
nation is performed within the framework of linear theory and the Boussinesq approximation. 

The equation of FIW dynamics has the following form in this case 

( o ( + oD ) y, t) Qo o 6 u, t), (2.1) t~ ~ + O u + O ~ ) +  = 

where Q is the total debit of the source of the mass, 3x, 3y, 3 z, 3 t are differentiation op- 
erators with respect to x, y, z, t, respectively, and ~(x, y, z, t) is the Dirac function. 
The quantity ~ satisfies the causality condition 

= 0 ~r t dO (2.2) 

(in the sense of the theory of generalized functions [5]). 
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The solution of the problem (2.1), (2.2) is unique (this is proved easily by using the 

theories of the Laplace and Fourier transforms of generalized functions [5]. Let us note 

that this is a more natural and easy path to the proof of the uniqueness theorem as compared 
with that proposed in [6, 7], and the CPSF is expressed in terms of the FFIWO in the form ~ = 

Q3z3te, where we use the notation e = e(x, y, z, t). 

The integral representation [2-4] 

N 

e = - -  H ( t ) / 2n2R  �9 .I ((N~ - -  ~2) (~2 _ n2))-a/2 sin ~ td~ ,  (2 .3 )  
n 

holds for the FFIWO, where n = N]z[/R, R= (r 2 + z 2)(2, r = (x 2 + y2)~2, and H(t) is the Heavi- 
side function. 

Formal differentiation of the right side of (2.3) with respect to z results in an inte- 

gral that diverges at the point ~ = n. It is regularized as follows. First the expression 

(3~ + n2)G, which has a representation in the form of a regular integral, is calculated, and 
2 n 2 then its convolution is taken with the fundamental function of the operator 3 t + . This 

yields 

~ = Q H  (t) z/2~2R3" [O'5~ c~ n t  + i ~ (N2 - -  ~2)l/~ ( ~  - -  n~)-3/2 (c~ n t  - -  c~ ~t)  d ~ ]  (2.4) 

For a numerical computation of the function ~, replacement of the variable of integration 

= (n2cos2y _L N 2 s i n  2 y)1/2, 

is useful and results in the following integral representation 

~/2 

= Qz /2n2R  3. j (cos nt  - -  cos 2 ~.cos ~t) d?/sin 2 ?. ( 2 . 5 )  
0 

It is easy to confirm that the singularity in the integrand at y = 0 is eliminable. 

The asymptotic of the FFIWO defined by (2.3) on the basis of formulas in [8] has the 
form 

e ~ - - ( 2 ~ ) - 3 / 2 R - l ( n t ) - l / ~ ( N 2  - -  n2 ) - l / 2 (n - l s in (n t  ~ ~/4)  ~ N - l s i n ( N t  - -  ~ /4) ) ,  nt  - +  oo, N - -  n > e ~ O. ( 2 . 6 )  

The asymptotic formula for e can be differentiated [8]. Consequently, the following asymp- 
totic is obtained for vertical displacements of fluid particles due to the FIW 

~__ Q(2~)-S/2zR-an-1/2( t (N 2 - -  n2)) l /2.s in(nt  + ~/4)~ nt  ~ oo~ 
(2.7) 

N - -  n ~ e  ~ O .  

The condition N -- n > E > 0, hindering the closure of the boundaries of the integration range 

in (2.3), makes (2.6) and (2.7) inapplicable in a small vertical two-sheeted cone with apex 
at the point of source action. On the vertical axis the integral (2.5) is calculated direct- 
ly and the result has the form 

= Q s i g n z . c o s N t / 4 g l z ]  ~, t > O. ( 2 . 8 )  

3. Integral representations for the CPSF and FFIWO are expansions in harmonics with a 
finite and identical frequency range for both functions, where the lower boundary was the local 

frequency n > 0 and the upper was the Weisalla frequency. The frequency distribution of these 
functions has the following qualitative distinction: The spectral density of the CPSF vanishes 

at the uper boundary of the frequency band while the spectral density of the FFIWO is infinite 
there. Both densities grow to infinite in the neighborhood of the lower boundary of the range 
of integration, but the former grows substantially more rapidly. This predetermines the dif- 
ference in the behaviors of both functions in space and in time upon retention of the simi- 
larity of a number of the fundamental features of the wave field pattern. 

At the initial instant the FFIWO field is zero, then it grows and later decomposes asymp- 
totically into the sum of two waves, one of which is propagated while the other performs 
standing oscillations at the Waisalla frequency. After these waves have been formed, their 
amplitudes start to decrease in proportion to t -1/2 as time passes. 

The field of unsteady FIW generated by the source evolves as follows. At the time of 
source action, its perturbation is transmitted at once to all points of the liquid medium be- 
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cause of its imcompressibility. The fluid particles leave their initial locations and shift 
instantaneously to new sites. The magnitude of the vertical displacement of the liquid par- 
ticles at the initial time is determined by the equality 

~1 t = o  = qz/4~B ~. 
Consequently, the water medium acquires a potential energy that starts to be transformed into 
FIW kinetic energy here. In contrast to the FFIWO, splitting of the field of unsteady waves 
generated by the concentrated source does not occur with the lapse of time. There are no 

standing waves oscillating at all points of the fluid at the Waisalla frequency in this 
case. The exception is points of the vertical axis passing through the source. The value of 
the vertical displacement is determined by (2.8) there. At the remaining points of the fluid, 
just the field of the waves being propazated is formed, where their amplitude does not decrease 

with time but grows in proportion to tl/2. 

The fact of the pulse-source-generated FIW growth with time has apparently not been dis- 
cussed earlier. However, it should be kept in mind, especially in an examination of the prob- 
lem of determining the field of stationary waves that occur in a stratified fluid flow around 
a bulk body. Attempts are often made to determine this field by making the solution of the 
unsteady problem of the flow around a system of sources and sinks stationary, but as we see, 
it is not made stationary. The output will possibly be found by replacing the singular 
sources and sinks by distributed ones, but such problems are substantially more difficult of 

solution and are not examined. 

The FIW constant phase surfaces have the form of vertical cones with apices at the points 
of source action. The wave amplitude in the vertical particle displacements diminishes in in- 
verse proportion to the square of the distance to the source. It is convenient to study the 
FIW field by considering its projection on a sphere of unit radius with center at the point of 
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source action. The conical, constant-phase, surfaces of the unsteady waves intersect this 
sphere along latitude circles. There is no change in the wave along each latitude, i.e., the 
wave field is a function only of one coordinate. This method of wave field examination was 
proposed in [9] in a study of a kindred problem on the forced inertial oscillations in an 
infinite homogeneous fluid that rotates uniformly relative to the vertical axis. 

4. For a numerical computation of the integral representation (2.5) and its asymptotic 
on an electronic computer, R = 1 and Q = 47 was taken (such a normalization yields the value 
1 for the standing oscillation amplitude at the poles of the unit sphere), and the substitu- 
tion z = cos 0, r = sin0 is made, where 0 is the latitude of the point of observation on the 
unit sphere. The results of the numerical computation are printed digitally and plotted. 
They are displayed in Figs. 1-6 as a sweep over four meridians. The Waisalla period T = 2n/N 

is a natural time unit. 

The results of the numerical analysis show that the FIW field evolves as follows on the 
unit sphere. Standing oscillations at the Waisalla frequency are performed at the sphere poles 
(and only there). At the time when the wave level there becomes maximal, separation of the 
next wave crest from the pole occurs. The oscillation at the pole reaches the lower position 
after ~T, and at this time a new wave trough is separated out. The wave being separated 
moves to the equator, first rapidly and then slowly. Figure la shows the evolution of a FIW 
in the initial stage of 0.25T duration. It is seen that even after the first 0.15T of time 
the first wave crest has traversed half the path from the pole to the equator of the unit 
sphere. After an interval of 0.25T measured from the beginning of the wave regime origina- 
tion, almost 2/3 the path to the equation has been traversed by this crest. Then the wave 
motion is abruptly retarded. The wave is shortened and its amplitude grows. Figure 2a shows 

that in the next 1/4 Waisalla period the wave will have traversed just barely more than 
0.i of the total path. Later (see Figs. 3a~6a), the wave motion is retarded still more 
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rapidly. The change in the wave field in the subsequent I/4 Waisalla period is displayed in 

Fig. 3a. Processes of second wave crest at t = T and second trough at t = 1.5T formation are 

seen. Furthermore (see Figs. 4a-6a) newFIW peaks and valleys appear after the very same time 

interval, which equals the Waisalla period. Therefore, as time passes the number of waves 
appearing in the hemisphere equals the number of Waisalla periods that have passed since the 
beginning of the oscillatory motion. 

The results of computations of the FIW field performed by the asymptotic formula (2.7) 

are represented in Figs. ib-6b). It is seen directly that in the domain 20 ~ < 0 < 45 ~ good 

qualitative, and satisfactory quantitative correspondence holds between the exact representa- 

tion of the FIW field and its asymptotic even for a time on the order of a quarter of a Wai- 
salla period. Later the range of action of the asymptotic formula is extended primarily in 

the direction to the equator of the unit sphere (following the first wave crest). This for- 

mula even acts with high accuracy (on the order of 5% or less) in the zone 0 < 0 < 50 ~ for 
t = To In practice, (2.7) correctly indicates the location of the maximums, minimums, and 
zeroes of the wave, with the exception of the zero lying to the right of the latitude ~ = 
50 ~ . For t = 2T the domain of action of the asymptotic is extended to the right to the lati- 

tude ~ = 60 ~ . For t = 5T the upper boundary of this domain reaches e = 70 ~ . Further dis- 

placement of the quantity eM (the upper boundary of the range of action of the asymptotic for- 

mula) proceeds slowly: e M = 77 ~ for t = 10T, 0 M = 82 ~ for t = 30T, ~M = 84~ for t = 50T, e M = 
85 ~ for t = 70T, etc. 

Therefore, the asymptotic formulas for the FFIWO and the CPSF satisfactorily describe 
the wave field behavior even in the initial stage of its evolution, with the exception of the 
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domain near the pole of the unit sphere. The wave field is constructed still more simply at 
the unit sphere poles themselves, as (2.8) shows. The deductions made are also carried over 
without difficulty to the case of a rotating uniformly stratified fluid. For this case 
the FFIWO is obtained in [3, 4]. 

The authors are grateful to V. A. Borovikov and E. V. Teodorovich for interesting inter- 
views related to the topic of this paper. 
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INSTABILITY WAVE EXCITATION BY A LOCALIZED VIBRATOR IN THE BOUNDARY LAYER 

A. M. Tumin and A. V. Fedorov UDC 532.526.013 

Modern methods of determining the critical Reynolds numbers for the laminar-turbulent 
boundary layer transition are based on computations of the linear stage of instability wave 
development (Tollmien--Schlichting waves), whose initial amplitudes are determined empirically 
[i, 2]. An analysis of the possible excitation mechanism for Tollmien--Schlichting (T--S) waves 
by external perturbations is needed to construct closed algorithms to compute the develop- 
ment of these waves. On the other hand, the problem of boundary layer susceptibility to ex- 
ternal effects is closely associated with questions of flow laminarization on aircraft ve- 
hicles. 

It is well known that spatially localized, external perturbations that are periodic in 
time excite T--S waves effectively [1-3]. Under real flight conditions and in wind tunnel 
tests the source of such perturbations might be the vibration of the surface being stream- 
lined. Experiments in [4, 5] indicate the close relationship between the origination of in- 
stability and the characteristics of model vibration. 

A theoretical analysis of the perturbations excited by vibrations of a surface being 
streamlined in the boundary layer was developed in [6-11]. The first mathematical model re- 
lated to T--S wave generation by a localized vibrator was constructed by Gaster [6]~ A vi- 
brator in sub- and supersonic boundary layers was examined in [7-9]. The analysis was per- 
formed within the framework of a three-layer asymptotic model under the assumption that the 
characteristic scales of the problem correspond to the neighborhood of the lower branch of 
the neutral curve. Asymptotic expressions are obtained for the longwave pressure perturba- 
tions excited in the neighborhood of the vibrating section of the surface. In particular, 
the amplitude of the damped T--S wave is determined. However, the problem of excitation of 
growing instability waves emerged beyond the framework of the mathematical model used. In 
this connection, a postulate was proposed in [i0] that permits determination of the amplitude 
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